Abstract
Keywords
1. Introduction
1.1 Definition of a drug discovery ecosystem
1.2 Defining moments in drug discovery

2. Vision and resources in an urban public institution

2.1 Synthetic medicinal chemistry
2.1.1 Serotoninergic and related ligands and targets
- Steele T.W.E.
- Spires Z.
- Jones C.B.
- Glennon R.A.
- Dukat M.
- Eltit J.M.
2.1.2 Natural products
2.1.3 Synthetic analogs of glycosaminoglycan biopolymers

2.1.4 Bivalent ligands and related concepts
2.1.5 Emerging technologies
- Gupton F.
- Tyler McQuade D.
2.2 Computational medicinal chemistry
2.2.1 Quantitative structure-activity relationships
2.2.2 Molecular modeling in three dimensions
- Spyrakis F.
- Kellogg G.E.
- Amadasi A.
- Cozzini P.
- Stone V.N.
- Parikh H.I.
- Elrami F.
- Ge X.
- Chen W.
- Zhang Y.
- Kellogg G.E.
- Xu P.
Spyrakis F., Dellafiora L., Da C., Kellogg G.E., Cozzini P. Correct Protonation States and Relevant Waters = Better Computational Simulations? In: De Benedetti, P.G., editor. Protonation States and Conformational Dynamics in Ligand-Target Recognition and Binding, Curr Pharm Des 2013;19:4291-309. doi: 10.2174/1381612811319230011.
2.2.3 Computational glycomics
- Nagarajan B.
- Holmes S.G.
- Sankaranarayanan N.V.
- Desai U.R.
2.3 Behavioral pharmacology
2.3.1 Drug discrimination

2.3.2 Drug discovery for psychiatry and neurology
2.4 Structural biology and structure-based design
RCSB Protein Data Bank. http://www.pdb.org/pdb/search/advSearch.do
2.4.1 Hemoglobin: structure and disease states

2.4.2 Allosteric effectors of hemoglobin
- Abraham D.J.
- Wireko F.C.
- Randad R.S.
- Poyart C.
- Kister J.
- Bohn B.
- et al.
2.4.3 Structure-based drug discovery and design

2.4.4 Cryo-electron microscopy (Cryo-EM)
- Yang L.
- Catalano C.
- Xu Y.
- Qiu W.
- Zhang D.
- McDermott A.
- et al.
- Kroeck K.G.
- Qiu W.
- Catalano C.
- Trinh T.K.H.
- Guo Y.
- Zhou R.
- Ji B.
- Kong Y.
- Qin L.
- Ren W.
- Guan Y.
- Ni R.
2.4.5 Computational protein structure prediction
- Herrington N.B.
- Kellogg G.E.

- Herrington N.B.
- Kellogg G.E.
2.5 Biophysics, binding and functional assays
2.5.1 Imaging and screening
- Blevins H.M.
- Xu Y.
- Biby S.
- Zhang S.
2.5.2 New therapeutic targets
- Curry A.M.
- Cohen I.
- Zheng S.
- Wohlfahrt J.
- White D.S.
- Donu D.
- Cen Y.
- Curry A.M.
- Cohen I.
- Zheng S.
- Wohlfahrt J.
- White D.S.
- Donu D.
- Cen Y.
- Morris A.
- Hoyle R.
- Pagare P.P.
- et al.
2.5.3 Microarrays and high-throughput screening (HTS)
- Boothello R.S.
- Sankaranarayanan N.V.
- Sistla J.C.
- Nagarajan B.
- Sharon C.
- Chittum J.E.
- et al.
3. Summary and assessment
Declaration of Competing Interests
Acknowledgments
References
- Predators and prey: a new ecology of competition.Harvard Bus Rev. 1993; (May-June 1993): 75-86
- Nat Rev Drug Discov. 2013; 12: 811-822https://doi.org/10.1038/nrd4155
- Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry.IUCrJ. 2017; 4: 308-321https://doi.org/10.1107/S2052252517009241
- Can we accelerate medicinal chemistry by augmenting the chemist with Big Data and artificial intelligence?.Drug Discov Today. 2018; 23: 1373-1384https://doi.org/10.1016/j.drudis.2018.03.011
- Portoghese medicinal chemistry lectureship: the "phenylalkylaminome" with a focus on selected drugs of abuse.J Med Chem. 2017; 60 (2014): 2605-2628https://doi.org/10.1021/acs.jmedchem.7B00085
- Molecular Orbital Theory in Drug Research.Academic Press, New York1971
- Molecular Connectivity in Chemistry and Drug Research.Academic Press, New York1976
- Molecular Structure Description: The Electrotopological State.Academic Press, San Diego1999
- Modeling Chemical Systems using Cellular Automata.Springer, Amsterdam2005
- Hemoglobin as a Receptor of Drugs and Peptides: X-Ray Studies of the Stereochemistry of Binding.J Am Chem Soc. 1986; 108: 1064-1078https://doi.org/10.1021/ja00265a036
- The effect of chirality on serotonin receptor affinity.Life Sci. 1979; 24: 1487-1492https://doi.org/10.1016/0024-3205(79)90032-8
- Effect of PMA optical isomers and 4-MTA in PMMA-trained rats.Pharmacol Biochem Behav. 2002; 72: 299-305https://doi.org/10.1016/s0091-3057(01)00776-6
- NAN-190: an arylpiperazine analog that antagonizes the stimulus effects of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT).Eur J Pharmacol. 1988; 154: 339-341https://doi.org/10.1016/0014-2999(88)90212-9
- [3H]DOB: a specific radioligand for 5-HT2 serotonin receptors.Eur J Pharmacol. 1985; 117: 145-146https://doi.org/10.1016/0014-2999(85)90486-8
- [125I]-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane: an iodinated radioligand that specifically labels the agonist high-affinity state of 5-HT2 serotonin receptors.J Med Chem. 1988; 31: 5-7https://doi.org/10.1021/jm00396a003
- Spiperone: influence of spiro ring substituents on 5-HT2A serotonin receptor binding.J Med Chem. 1998; 41: 5084-5093https://doi.org/10.1021/jm980452a
- Revised pharmacophore model for 5-HT2A receptor antagonists derived from the atypical antipsychotic agent risperidone.ACS Chem Neurosci. 2019; 10: 2318-2331https://doi.org/10.1021/acschemneuro.8b00637
- 2-Substituted tryptamines: agents with selectivity for 5-HT6 serotonin receptors.J Med Chem. 2000; 43: 1011-1018https://doi.org/10.1021/jm990550b
- Toward selective drug development for the human 5-hydroxytryptamine 1E receptor: a comparison of 5-hydroxytryptamine 1E and 1F receptor structure-affinity relationships.J Pharmacol Exp Ther. 2011; 337: 860-867https://doi.org/10.1124/jpet.111.179606
- Central nicotinic receptor ligands and pharmacophores.Pharm Acta Helv. 2000; 74: 103-114https://doi.org/10.1016/s0031-6865(99)00022-9
- des-Formylflustrabromine (dFBr): a structure-activity study on its ability to potentiate the action of acetylcholine at α4β2 nicotinic acetylcholine receptors.ACS Chem Neurosci. 2018; 9: 2984-2996https://doi.org/10.1021/acschemneuro.8b00156
- MD-354: what is it good for?.CNS Drug Rev. 2007; 13: 1-20https://doi.org/10.1111/j.1527-3458.2007.00002.x
- Superagonist, full agonist, partial agonist, and antagonist actions of arylguanidines at 5-hydroxytryptamine-3 (5-HT3) subunit A receptors.ACS Chem Neurosci. 2016; 7: 1565-1574https://doi.org/10.1021/acschemneuro.6b00196
- Structure-activity relationships of synthetic cathinones.in: Baumann M.H. Glennon R.A. Wiley J.L. Neuropharmacology of new psychoactive substances. Springer Nature, Switzerland2017: 19-47
- Non-conserved residues dictate dopamine transporter selectivity for the potent synthetic cathinone and psychostimulant MDPV.Neuropharmacology. 2021; 200108820https://doi.org/10.1016/j.neuropharm.2021.108820
- Review of 3D templates for in silico homology models of MATs: improved 3D model of hDAT.Med Chem Res. 2022; 31: 643-651https://doi.org/10.1007/s00044-022-02863-5
- Design, Synthesis and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as Mu Opioid Receptor Selective Antagonists.J Med Chem. 2009; 52: 1416-1427https://doi.org/10.1021/jm801272c
- Design, Synthesis, and Biological Evaluation of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4’-pyridyl)carboxamido]morphinan Derivatives as Peripheral Selective Mu Opioid Receptor Antagonists.J Med Chem. 2012; 55: 10118-10129https://doi.org/10.1021/jm301247n
- Structure activity relationship studies of 6β- and 6α-indolylacetamidonaltrexamine derivatives as bitopic mu opioid receptor modulators and elaboration of ‘message-address concept’ to comprehend their functional conversion.ACS Chem Neurosci. 2019; 10: 1075-1090https://doi.org/10.1021/acschemneuro.8b00349
- Application of Bivalent Bioisostere Concept on Design and Development of Mu Opioid Receptor Modulators.J Med Chem. 2019; 62: 11399-11415https://doi.org/10.1021/acs.jmedchem.9b01767
- Design, Synthesis and Biological Evaluation of NAP Isosteres: a Switch from Peripheral to Central Nervous System Acting Mu-Opioid Receptor Antagonists.J Med Chem. 2022; 65: 5095-5112https://doi.org/10.1021/acs.jmedchem.2c00087
- Characterization of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as Novel Leads to Development of Mu Opioid Receptor Selective Antagonists.ACS Chem. Neurosci. 2011; 2: 346-351https://doi.org/10.1021/cn2000348
- Behavioral and Cellular Pharmacology Characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan (NAQ) as a Mu Opioid Receptor Selective Ligand.Eur J Pharmacol. 2014; 736: 124-130https://doi.org/10.1016/j.ejphar.2014.04.041
- Comparison of Pharmacological Properties between the Kappa Opioid Receptor Agonist Nalfurafine and 42B, its 3-Dehydroxy Analogue: Disconnect between in Vitro Agonist Bias and in Vivo Pharmacological Effects.ACS Chem Neurosci. 2020; 11: 3036-3050https://doi.org/10.1021/acschemneuro.0c00407
- Total Synthesis of Anibamine, a Novel Natural Product as Chemokine Receptor CCR5 Antagonist.Org Lett. 2007; 9: 2043-2046https://doi.org/10.1021/ol070748n
- Structure-Activity-Relationship Studies of Natural Product Chemokine Receptor CCR5 Antagonist Anibamine toward the Development of Anti Prostate Cancer Agents.Eur J Med Chem. 2012; 55: 395-408https://doi.org/10.1016/j.ejmech.2012.07.049
- Design, syntheses, and characterization of pharmacophore based chemokine receptor CCR5 antagonists as anti prostate cancer agents.Eur J Med Chem. 2013; 69: 647-658https://doi.org/10.1016/j.ejmech.2013.09.004
- Anibamine and its Analogs; Potent Antiplasmodial Agents from Aniba citrifolia.J Nat Prod. 2019; 83: 569-577https://doi.org/10.1021/acs.jnatprod.9b00724
- In vivo and in vitro patterns of the activity of simocyclinone D8, an angucyclinone 1 antibiotic from Streptomyces antibioticus.Antimicrob Agents Chemother. 2009; 53: 2110-2119https://doi.org/10.1128/AAC.01440-08
- Inhibition of human topoisomerases I and II by simocyclinone D8.J Nat Prod. 2012; 75: 1485-1489https://doi.org/10.1021/np300299y
- Defining a minimum pharmacophore for simocyclinone D8 disruption of DNA gyrase binding to DNA.Med Chem Res. 2014; 23: 3632-3643https://doi.org/10.1007/s00044-014-0942-z
- Flavone-based analogues inspired by the natural product simocyclinone D8 as DNA gyrase inhibitors.Bioorg Med Chem Lett. 2013; 23: 5874-5877https://doi.org/10.1016/j.bmcl.2013.08.094
- Preparation and evaluation of deconstruction analogs of 7-deoxykalafungin as AKT kinase inhibitors.Bioorg Med Chem Lett. 2014; 24: 271-274https://doi.org/10.1016/j.bmcl.2013.11.020
- Phenylalanine-Based Inactivator of AKT Kinase: Design, Synthesis, and Biological Evaluation.ACS Med Chem Lett. 2014; 5: 462-467https://doi.org/10.1021/ml500088x
- Design, synthesis, and in vitro evaluation of a fluorescently labeled irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKACα).Org Biomol Chem. 2016; 14: 4576-4581https://doi.org/10.1039/C6OB00529B
- Characterization of PKACα enzyme kinetics and inhibition in an HPLC assay with a chromophoric substrate.Anal Biochem. 2017; 532: 45-52https://doi.org/10.1016/j.ab.2017.06.001
- Kinetics and Inhibitor Studies of the L205R mutant of cAMP-dependent protein kinase involved in Cushing's syndrome.FEBS Open Bio. 2018; 8: 606-613https://doi.org/10.1002/2211-5463.12396
- Chemical sulfation of small molecules - advances and challenges.Tetrahedron. 2010; 66: 2907-2918https://doi.org/10.1016/j.tet.2010.02.015
- Rapid and efficient microwave-assisted synthesis of highly sulfated organic scaffolds.Tetrahedron Lett. 2007; 48: 6754-6758https://doi.org/10.1016/j.tetlet.2007.07.100
- Synthesis of per-sulfated flavonoids using 2,2,2-trichloro ethyl protecting group and their factor Xa inhibition potential.Bioorg Med Chem. 2005; 13: 1783-1789https://doi.org/10.1016/j.bmc.2004.11.060
- Narcotic antagonistic potency of bivalent ligands which contain beta-naltrexamine. Evidence for bridging between proximal recognition sites.J Med Chem. 1982; 25: 847-849https://doi.org/10.1021/jm00349a016
- A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5 -μ- opioid receptor interactions in human astroglia and microglia.AIDS. 2013; 27: 2181-2190https://doi.org/10.1097/QAD.0b013e3283639804
- Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization.Bioorg Med Chem. 2016; 24: 5969-5987https://doi.org/10.1016/j.bmc.2016.09.059
- Structure-based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity.J Med Chem. 2021; 64: 7702-7723https://doi.org/10.1021/acs.jmedchem.1c00408
- Design of Bivalent Ligands Targeting GPCR Putative Dimers.Drug Discov Today. 2021; 26: 189-199https://doi.org/10.1016/j.drudis.2020.10.006
- Bivalent compound 17MN exerts neuroprotection through interaction at multiple sites in a cellular model of Alzheimer's disease.J Alzheimer's Dis. 2015; 47: 1021-1033
- Selective N-chelation-directed C-H activation reactions catalyzed by Pd(II) nanoparticles supported on multiwalled carbon nanotubes.Org Lett. 2015; 17: 1782-1785https://doi.org/10.1021/acs.orglett.5b00566
- Chelation-directed C-H activation/C-C bond forming reactions catalyzed by Pd(ii) nanoparticles supported on multiwalled carbon nanotubes.Chem Commun. 2017; 53: 7022-7025https://doi.org/10.1039/c7cc02122d
- Palladium-Catalyzed C–H Amination of C(sp2) and C(sp3)–H Bonds: Mechanism and Scope for N-Based Molecule Synthesis.ACS Catalysis. 2018; 8: 5732-5776https://doi.org/10.1021/acscatal.8b01168
- ACS Award for Affordable Green Chemistry. 96. C&EN Global Enterprise, 2018: 41https://doi.org/10.1021/cen-09602-awards17
- A new substituent constant, π, derived from partition coefficients.J Am Chem Soc. 1964; 86: 5175-5180https://doi.org/10.1021/ja01077a028